Syzyges of curve and property No Thursday, January 21, 2016 4:11 PM

∮1 Ceneralities

X sm pg variety

I very ample

 $X \hookrightarrow \mathbb{P}(H^{\circ}(X, \stackrel{\star}{L})^{*})$

S= Sym H°(X, L)

R = homograms coved ring of X (as an S-alg)

Def L is said to have

@ No when I is normally guerated

 $R = \bigoplus_{i \neq 0} H^{\circ}(X, \mathcal{L}^{i})$

D Np for P≥1 if No and

 $0 \rightarrow F_s \rightarrow \cdots \rightarrow F_s \rightarrow R \rightarrow 0$

 $F_o = S$ and $F_i = S_{i-1}$

for 15189 = s

X proj, L v.a., $S = Sym H^{\circ}(X, L)$ $F \in Coh(X)$

module $B = \bigoplus H^{\circ}(X, \digamma \otimes L^{q}) = \bigoplus B_{q}$ $q \in \mathbb{Z}$

 Λ^{P+1} $H^{\circ}(\lambda, L) \otimes B_{g-1}$

Nº H°(X, L) ⊗ Bg

 $\bigwedge^{d_{P, \frac{p}{2}}} \bigwedge^{p-1} H^{\circ}(X, \underline{L}) \otimes \mathcal{B}_{g_{P}}$

 $K_{P/S}(X, 7, 1) = \frac{Ker(d_{PS})}{I_{m(d_{PS}, S^{-1})}}$

(Koszal cohomo logy

 $\mathbb{O} \mid \langle P, g \mid (X, L) := \langle K P, g \mid (X, \mathcal{O}_X, L) \rangle$

@ Kp.q (x, L) := Torp (R, S/s+) p+g

3 Fp = # Kpq (X, L) & S(-p-g)

Generators in deg p=8

Br- Fp

 $0 \longrightarrow I_{\times} \longrightarrow S \longrightarrow R \longrightarrow 0$ $1 \longrightarrow S(-2)^{\oplus \alpha}$ $N_1:$ "ideal generated by quadratics"

 N_1 : ideal generation of form $Q_1, \dots, Q_k = \sum d_i Q_i = 0$ d_i : linear form

Len $X_1,...,X_n \in X$ distinct st. $D = \sum X_i$, L(D) is global gave h'(L) = h'(L(-D))Then $0 \to M_{L(-D)} \to M_L \to \bigoplus_{i=1}^n \mathcal{O}(-X_i) \to 0$